Characterization of anti-MERS-CoV antibodies against various recombinant structural antigens of MERS-CoV in an imported case in China
نویسندگان
چکیده
The first imported case of Middle East respiratory syndrome (MERS) in China recently occurred, allowing for the characterization of antibody titers in a series of the patient's sera using the following methods based on recombinant viral structural antigens: inactivated MERS coronavirus (MERS-CoV) enzyme-linked immunosorbent assay (ELISA), recombinant MERS-CoV spike (S, or fragments of S) ELISA, nucleoprotein (NP) ELISA and MERS S pseudovirus particle-based neutralization test (ppNT). A longitudinal profile of the infection showed that seroconversion detected by ELISAs based on the recombinant extracellular domain, S, S1 and receptor-binding domain (RBD) antigens occurred as early as neutralizing antibodies were detected by the ppNT and earlier than antibodies were detected by the inactivated MERS-CoV and N-terminal domain (NTD) ELISAs. Antibodies detected by the NP ELISA occurred last. Strong correlations were found between the S1, RBD and NP ELISAs and the inactivated MERS-CoV ELISA. The S and RBD ELISAs were highly correlated with the commercial S1 ELISA. The S ELISA strongly correlated with the ppNT, although the MERS-CoV, S1, NTD and RBD ELISAs were also significantly correlated with the ppNT (P<0.001).
منابع مشابه
Complete Genome Sequence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) from the First Imported MERS-CoV Case in China
On 26 May 2015, an imported Middle East respiratory syndrome coronavirus (MERS-CoV) was identified in Guangdong Province, China, and found to be closely related to the MERS-CoV strain prevalent in South Korea. The full genome of the ChinaGD01 strain was sequenced and analyzed to investigate the epidemiology and evolution of MERS-CoV circulating in South Korea and China.
متن کاملA47 Origin and possible genetic recombination of the middle east respiratory syndrome coronavirus from the first imported case in china: phylogenetics and coalescence analysis
ing infections in humans is genetically indistinguishable from the virus found in Arabian camels (dromedaries) in the Middle East. Although no primary human case of MERS was reported outside the Arabian Peninsula, camel populations in Africa are known to have high prevalence of antibodies against MERS-CoV. We carried out surveillance for MERS-CoV in dromedaries in Africa and Central Asia. By ME...
متن کاملRecombinant Receptor-Binding Domains of Multiple Middle East Respiratory Syndrome Coronaviruses (MERS-CoVs) Induce Cross-Neutralizing Antibodies against Divergent Human and Camel MERS-CoVs and Antibody Escape Mutants.
Middle East respiratory syndrome coronavirus (MERS-CoV) binds to cellular receptor dipeptidyl peptidase 4 (DPP4) via the spike (S) protein receptor-binding domain (RBD). The RBD contains critical neutralizing epitopes and serves as an important vaccine target. Since RBD mutations occur in different MERS-CoV isolates and antibody escape mutants, cross-neutralization of divergent MERS-CoV strains...
متن کاملMiddle East Respiratory Syndrome Coronavirus (MERS-CoV): A Review Article
The recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in the Middle East region in 2012. The virus is phylogenetically related to bat CoV, but other animal species like camels and goats may potentially act as an intermediate host by spreading the virus to humans. This virus is thought to cause a severe disease in patients with underlying comorbidities. Laboratory ...
متن کاملImported case of MERS-CoV infection identified in China, May 2015: detection and lesson learned.
At the end of May 2015, an imported case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection was confirmed in China. The patient is in a stable condition and is still undergoing treatment. In this report, we summarise the preliminary findings for this imported case and the results of contact tracing. We identified 78 close contacts and after 14 days of monitoring and isolation,...
متن کامل